If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43x^2-29x=0
a = 43; b = -29; c = 0;
Δ = b2-4ac
Δ = -292-4·43·0
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-29}{2*43}=\frac{0}{86} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+29}{2*43}=\frac{58}{86} =29/43 $
| 4(x-1)-1=2x+7 | | 2x-1=5x+35 | | 2a+8+3a^2=0 | | 4/5w+5=10 | | 3(x–5)=4x+4 | | 28y^2+39y+8=0 | | 3(x-–5=4x+4 | | 4n^2+3-7=0 | | r4 =75 | | 8d+5=7d+10 | | √441=x^2 | | 5x2=-500 | | 5x2=-0500 | | x/100=17.16/104 | | 8/2x+x+1/x-1=1 | | 11=x15 | | 100x+400=60(12+x) | | y^-(1/2)=(1/3) | | x^2-72x-225=0 | | x^2-72x-226=0 | | 34+3x=5(-x+6)-36 | | x(x+0.01)=14 | | 3k+12=255 | | 2x+1.33x=111 | | 2x+.75x=111 | | (4x-3)^2=25 | | 0.25=(x)^(1/2) | | 4×-6=3x+4 | | 3y+7y+1=0 | | 7x/9+9/1=2 | | 5(12+6n)=-6n+65 | | -6+6m=-12(m-10) |